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Synchronization of noisy systems by stochastic signals
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We study, in terms of synchronization, thenonlinear responseof noisy bistable systems to a stochastic
external signal, represented by Markovian dichotomic noise. We propose a general kinetic model which allows
us to conduct a full analytical study of the nonlinear response, including the calculation of cross-correlation
measures, the mean switching frequency, and synchronization regions. Theoretical results are compared with
numerical simulations of a noisy overdamped bistable oscillator. We show that dichotomic noise can instan-
taneously synchronize the switching process of the system. We also show that synchronization is most pro-
nounced at an optimal noise level—this effect connects this phenomenon with aperiodic stochastic resonance.
Similar synchronization effects are observed for a stochastic neuron model stimulated by a stochastic spike
train. @S1063-651X~99!11407-7#

PACS number~s!: 05.40.2a
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I. INTRODUCTION

Recently, the phenomenon of synchronization@1,2# has
been generalized to two new important classes of system
chaotic systems and stochastic systems. Full synchroniza
of chaos@3,4# and phase synchronization of chaotic syste
@5# have been studied, and the concept of generalized
chronization of chaotic systems was proposed in Refs.@6,7#.
Synchronizationlike phenomena have also been observe
purely stochastic systems, where the noise controls a cha
teristic time scale of the system. Both the phenomenon
mutual synchronization of stochastic bistable systems@8# and
forced synchronization~by external periodic signals! @9,10#
have been demonstrated in stochastic systems with a n
controlled time scale. Thus, the classical concept of ph
synchronization has been applied to the last-named cas
forced synchronization@11#. In particular, it has been show
that noise-induced switching between metastable states
system can beinstantaneouslysynchronized by an externa
periodic force.

In previous studies, the synchronization of stochas
bistable systems was considered for periodic driving sign
or deterministically chaotic driving forces@12#. However, for
many practical applications, stochastic driving signals
relevant@13#. Such signals are especially relevant to biolo
cal systems, such as ion channels@14,15# and sensory neu
rons @16#, where signals are typically stochastic in nature
contaminated by noise.

Here we show thatnoisy systemswhich do not have any
deterministic natural frequency can be synchronized b
stochastic driving signal. We study this new type of synchro
nization in a simple but generic kinetic model, which rep
sents a wide class of stochastic bistable systems. Basic
we consider a bistable system with thermal noise, pertur
by an external dichotomic stochastic signal. In this syste
we assume that the magnitude of the external signal is in
ficient to cause a transition in the noise-free system.

The paper is organized as follows. In Sec. II, the gene
PRE 601063-651X/99/60~1!/284~9!/$15.00
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kinetic model is introduced. Section III is devoted to an an
lytical study of the model, including the calculation of cros
correlation measures, the mean switching frequency,
synchronization regions. In Sec. IV, analytical results a
compared with numerical results for an overdamped stoch
tic bistable oscillator driven by dichotomic noise. In Sec. I
the instantaneous phase is introduced and the effect of p
synchronization is demonstrated. Numerical simulations o
stochastic neuron model are presented in Sec. V. Finally,
results are summarized and discussed in Sec. VI.

II. SIMPLIFIED FOUR-STATE MARKOVIAN MODEL

In most studies of stochastic resonance@17–20#, the sto-
chastic bistable dynamics is modulated by an externalperi-
odic signal, so that the periodic force represents an exte
‘‘clock’’ @19# which is able to synchronize stochastic switc
ing events instantaneously@11,20#. In the present study, we
aim to show that a similar synchronization effect can be
tained for a stochastic signal, represented by a dichoto
Markovian process. Thus, in the situation we consider,
system is driven by two noises: the first is broadband Gau
ian noise which represents internal~or thermal! noise, while
the second, a dichotomic noise, represents an input stoch
signal. Although such a signal is random, it possesses a c
acteristic time scale, represented by the inverse flipping
between its two states. This then leads us to consider whe
the external dichotomic noise can synchronize the switch
dynamics of the system. Thus, we understand synchron
tion in a classical way of instantaneous matching of swit
ing events at the input and output.

The response of a bistable system to a weak stocha
input can be studied in the framework of linear respon
theory ~LRT! @21#. This approach will be used for calcula
tions of the cross-correlation measures. However, synchr
zation effects of phase and frequency locking lie beyond
limits of LRT. An analytical treatment of bistable system
driven by dichotomic noise is possible with a simplifie
284 ©1999 The American Physical Society
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PRE 60 285SYNCHRONIZATION OF NOISY SYSTEMS BY . . .
model that captures the main features of the physical si
tion. A two-state model for studying fluctuating symmetric
bistable systems was first used by Debye@22#, and applied in
Refs. @23,24# for the purpose of calculating mean esca
rates in systems with fluctuating barriers@25#. Moreover, a
simplified two-state model with periodic modulation w
used in Ref.@26# to study stochastic resonance.

Assume that the stochastic bistable system possesse
symmetric metastable statess(t)561 and is characterized
by the mean switching ratea0. We assume that the switchin
rate depends on the internal noise intensityD according to
the Arrhenius law

a0~D !5a0 expS 2
DU

D D , ~1!

wherea0 is a prefactor andDU represents the barrier heigh
Suppose now that dichotomic noise influences the bista
dynamics as an additive input signal. As a result, the Kra
ers rate@Eq. ~1!# changes. Ifd(t)561 corresponds to the
values of the input dichotomic stochastic signal, we supp
that the rates vary according to the relations

W21→11„d~ t !…5a0~D !expFQ

D
d~ t !G ,

~2!

W11→21„d~ t !…5a0~D !expF2
Q

D
d~ t !G ,

where Q is the magnitude of the input signal. The inp
signal d(t) switches between two states61 with flipping
rateg, so that its correlation function is

Rdd~t!5exp~22gt!. ~3!

We neglect completely intrawell fluctuations~see also
Ref. @26#!. However, as we will show below, our simplifie
model exhibits good agreement with a detailed numer
simulation of a flow stochastic bistable system.

The magnitude of the input signal is always smaller th
the barrier height:Q,DU. This restriction guarantees tha
the signal itself cannot switch the system from one state
another. However, below we will consider input signals th
are sufficiently large so as to lead to situations where the
rates of the system,

a15a0 expS 2
DU1Q

D D , a25a0 expS 2
DU2Q

D D ,

~4!
a-
l
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allow the consideration of the following rate separations:~i!
a1<a2!g, ~ii ! a1<g<a2, and ~iii ! g!a1<a2. We point
out that for a fixedg!a0, all three cases can be subs
quently approached by changing the noise intensityD only.
The latter condition also guarantees the adiabatic limit of
ratesa1 anda2 @27#.

The two states of the outputs(t) and the two states of the
input d(t) form a four-state Markovian system, which
shown schematically in Fig. 1. In Fig. 1, the states of t
system$s,d% are marked by the two indices, referring to th
output and input, respectively. The dynamics of the system
described by the master equation for the conditional pr
ability densityPs,d5P(s,d,tus0 ,d0 ,t0):

] tPs,d52~Ws→2s~d!1g!Ps,d1gPs,2d

1W2s→s~d!P2s,d ~5!

with stationary solutions

P21,21
S 5P11,11

S 5
a21g

2~a11a21g!
,

P21,11
S 5P11,21

S 5
a11g

2~a11a21g!
. ~6!

The master equation allows a full time-dependent ana
sis, including calculation of auto correlation and cros
correlation functions. From the regression theorem, ev
ensemble-averaged statistical quantityM (t) is governed by a
linear differential equation which, in our case, takes the f
lowing form:

FIG. 1. Schematic of the model. The first index marking sta
of the system refers to the outputs, while the second index refer
to the state of the input dichotomic noised; g is the flipping rate of
the input signal anda1,2 are the modified rates@Eq. ~4!# of the
system.
d3M ~ t !

dt3
22~a11a212g!

d2M ~ t !

dt2
1@~a11a2!212g~3~a11a2!12g!#

dM~ t !

dt

22~a11a2!g~a11a212g!„M ~ t !2MS
…50. ~7!
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286 PRE 60ALEXANDER NEIMAN et al.
This can be solved for given initial conditionsd2M /dt2(t
50), dM/dt(t50), M (t50), and MS5M (t→`). With
the eigenvalues

l152g, l25a11a2 , l35a11a212g, ~8!

the solution of Eq.~7! in the form

M ~ t !5A1e2l1t1A2e2l2t1A3e2l3t1MS ~9!

reduces the problem to finding the constant coefficie
(A1 ,A2 ,A3) from the initial conditions.

III. MEASURES OF STOCHASTIC SYNCHRONIZATION

A. Cross-correlation based measures

Linear measures of synchronization are based on
cross-correlation functions between the output processs(t)
and the input stochastic signald(t). The simplest measure i
the stationary correlation coefficientr:

r5
^sd&

A^s2&^d2&
. ~10!

In the case of an extremely weak signal,Q→0, all cross-
correlation measures can be obtained in terms of LRT. T
theory has been successfully applied to stochastic reson
and related phenomena@21,28–30#. According to LRT, all
cross-correlation quantities can be expressed through the
ceptibility of the system,x(v). In particular, if Gdd(v) is
the spectral density of the signal, then the cross-spectral
sity Gds(v) is x(v)Gdd(v) @30#. For a two-state symmetric
system, the susceptibility is given by@22,29#

x~v!5
1

D

a0

a02 iv
, ~11!

which leads to a simple formula for the correlation coe
cient:

rLRT5
a0Q

D~g1a0!
, Q→0. ~12!

According to LRT, the correlation coefficient possesse
single maximum as a function of noise intensityD @30#.

For our purposes~i.e., to synchronize stochastic switchin
dynamics!, the magnitude of dichotomic noise could b
rather large. This situation is beyond the limits of LRT. O
the other hand, the master equation approach allows on
obtain theexactexpressions for the correlation functions
the framework of the simplified model.

Using the stationary solutions of the master equation~6!,
the correlation coefficient is

r5
a22a1

a11a212g
. ~13!

In the limit Q→0, we indeed recover the LRT result@Eq.
~12!#. The correlation coefficient is shown in Fig. 2 as
function of noise intensityD for different values of signa
magnitudeQ and flipping rateg. First, we see that the degre
of input–output correlation is maximal at a certain noise
ts
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tensity, which recalls aperiodic stochastic resonance@13#.
With an increase inQ, the correlation coefficient indeed in
creases. Note that for a large enough signal magnitudeQ
50.2), the dependencer(D) flattens, and the correlation
coefficient takes its maximal value in a certain region
noise intensity. We will see further that this behavior refle
mean switching frequency locking, which is a sychronizati
effect that cannot be revealed in the framework of LR
With an increase in flipping rate, the correlation coefficie
decreases, reflecting the low-frequency response proper
bistable systems@28,31,21#.

Another appropriate measure for synchronization is
coherence function@8,32# obtained from the spectral dens
ties of the two-dimensional process$s(t),d(t)%:

G2~v!5
uGsd~v!u2

Gdd~v!Gss~v!
. ~14!

In Eq. ~14!, Gsd(v) is the cross-spectral density, an
Gdd(v) and Gss(v) are the spectral densities of the inp
and output, respectively. The largest possible value of
coherence function, 1, refers to the existence of strong

FIG. 2. Correlation coefficient~13! vs noise intensity for indi-
cated values of signal magnitudeQ and fixed flipping rateg
50.001 ~a!, and for different values of flipping rate with fixed
magnitudeQ50.2 ~b!. Ratesa1 anda2 are given by Eqs.~4! with
DU5

1
4 anda051/(A2p).
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PRE 60 287SYNCHRONIZATION OF NOISY SYSTEMS BY . . .
pendence between two processes in a certain frequenc
gion. The calculation of the coherence function is straig
forward for both the LRT approach@30# and the master
equation approach. It is maximal in a low-frequency doma
corresponding to the low-frequency input signal. Again,
coherence is maximal at an optimal noise level.

B. Synchronization as a mean frequency-locking phenomenon

Although the linear measures discussed above s
noise-enhanced growth of coherence between input-ou
processes, they do not attest that the switching process
the input and output are synchronized in time. We note t
in the classical theory of oscillation@1#, synchronization is
understood as an instantaneous phase-locking or freque
locking phenomenon. The situation becomes more com
cated in the presence of noise. In this case, a statistica
scription of synchronization should be used@2,11,33#. The
instantaneous phase description will be used in Sec. IV f
flow stochastic bistable system. Here we show theoretic
the effect of mean switching frequency-locking.

The output two-state stochastic process can be chara
ized by the mean durations of the upper state and lower s
^T&15^T&2 . The mean ‘‘period’’ of switching is therefore
^T&s5^T&11^T&2 . In the frequency domain, this quantit
corresponds to the mean switching frequency~MSF!:

^v&s5
2p

Ts
5

p

^T&6
. ~15!

In the same way, the MSF can be defined for the input
chotomic noise:

^v&05pg. ~16!

The simplified kinetic model introduced in the previo
sections allows one to calculate the mean switching rat
the output of the system, and then compare it with that at
input. Contrary to the previous analysis, we now impose
absorption boundary condition at the states51 and seek the
mean time of leaving the states521. Initially, we suppose
that both statesd561 of the dichotomic stochastic signa
are equally populated. The same situation was studied
Refs. @24,23# in connection with the effect of resonant ac
vation.

The evolution of probability to find the system in, say t
left potential well P21(t)5P21,21(t)1P21,11(t), is de-
scribed by the equations (d561)

d

dt
P21,d52@Ws521→s51~d!1g#P21,d1gP21,2d ,

~17!

which have to be solved with the initial conditionP21,21(t
50)5P21,11(t50)5 1

2 . The eigenvalues are

r 1,25
1

2
@a11a212g6A~a12a2!214g2#. ~18!

The global relaxation rate is determined by the smaller
genvalue, which also give an estimation of the MSF:
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^v&s5
p

2
@a11a212g2A~a12a2!214g2#. ~19!

The MSF versus noise intensity is shown in Fig. 3 for d
ferent values of the signal magnitudeQ. For smallQ, the
dependencêv&s(D) follows the exponential Arrhenius law
However, for larger driving magnitudes, the Arrhenius la
breaks down, and for a large enoughQ, the MSF is nearly
constant over a range of noise intensities and equals
mean switching frequency of the input signal (pg). For
small noise,a2(D)!g and the MSF approachespa1/2,
whereas for large noise,^v&s approachespa2 @24#. In other
words, the MSF is locked in afinite region of noise intensity
in the same way as it was observed for periodically driv
stochastic bistable systems@9,11#. We also note that qualita
tively the same mean frequency versus driving freque
behavior can be observed in synchronized limit-cycle os
lators @2#. In our case, we change the noise intensity, wh
is equivalent to changing the characteristic time-scale of
system. We note that this is the first theoretical evidence
stochastic synchronization as an MSF-locking effect.

Imposing the condition

u^v&s2pgu<e, e!1, ~20!

we can obtain a region of MSF locking in the parame
plane of noise intensity versus signal magnitude. These s
chronization regions are shown in Fig. 4 for different valu
of flipping rate. MSF-locking regions look similar to Arnol
tongues, and their width decreases with an increase in
ping rate in the same manner as for periodically driven s
chastic bistable systems@9#. The tongues occur even forQ
50. However, they have a distinguishable width only f
sufficiently large input-signal magnitudes~see also Fig. 3!.

IV. SYNCHRONIZATION OF AN OVERDAMPED
BISTABLE OSCILLATOR BY DICHOTOMIC NOISE

The overdamped bistable oscillator is governed by
stochastic differential equation

FIG. 3. Mean switching frequency~MSF! vs noise intensityD
for different values of signal magnitude:Q50.05 ~1!, Q50.1 ~2!,
and Q50.2 ~3!. Other parameters are the same as in Fig. 2. T
MSF at the input is shown by the dashed line.
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288 PRE 60ALEXANDER NEIMAN et al.
ẋ5x2x31Qd~ t !1A2Dj~ t !, ~21!

where j(t) is internal ~or thermal! noise with intensityD,
andd(t) is dichotomic noise with flipping rateg.

We assume that the magnitude of the dichotomic nois
always small, i.e., the signal alone cannot cause the no
free system~i.e., a system with no internal noise! to switch
from one state to another. For low-frequency modulati
this requires that

Q,Q05
2

3A3
. ~22!

Recently, similar models, but with multiplicative noise, ha
attracted considerable attention due to the effect of reso
activation@25#. In addition, aperiodic stochastic resonance
this model was studied in Ref.@34#.

In the absence of an external signal (Q50), the stochastic
dynamics of system~21! is characterized by the Kramer
time TK @27# for transitions between potential wells, or b
the mean switching frequency, in the frequency domain. T
time scale is fully controlled by noise and~in the absence o
an external signal! follows Kramers law:

TK5A2p expS 1

4D D . ~23!

In the following subsections, we present the results
numerical simulations of Eq.~21!. To compare these result
with the theoretical predictions of the previous sections,
have filtered out intrawell motion, so that the output proc
represents the two-state dynamics of the system. We
^v&05pg50.002, which provides good separation of t
system time scales.

A. Correlation coefficient

We start with cross-correlation measures. The correla
coefficient is shown in Fig. 5~symbols! as a function of
internal noise intensity for different values of signal mag
tude. To compare these numerical results with the theore
prediction@Eq. ~13!#, we note that, since the potential profi
changes considerably for a signal of large magnitudeQ, the

FIG. 4. Regions of MSF-locking defined by Eq.~20! with e
51025 for different values of the flipping rate:g50.0005~1!, g
50.001~2!, andg50.002~3!.
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Kramers formula~23! is violated. Consequently, we calcu
late the ratesa1,2 using the mean first passage time theo
@27#: for the overdamped bistable system~21!, the ratesa1,2
can be found through the mean first passage time to the
of the potential barrier in the adiabatic approximation
slowly varying dichotomic noise, i.e., the flipping rate of th
noise is much less than the relaxation rates inside the po
tial wells. We first locate the extrema of the potentialU(x)
52x2/21x4/4 from the cubic equationx32x6Q50. We
let x0

6 be the coordinate of the top of the potential, andx1
6 be

the coordinate of the left bottom. For the mean first pass
time T6 to reach the top of the potential, we find@27#

T65
1

DE
x1

6

x0
6 dy

G6~y!
E

2`

y

G6~z!dz,

~24!

G6~x!5expF 1

D S x2

2
2

x4

4
7QxD G .

Substituting the ratesa1,251/2T7 into Eq. ~13!, we obtain
the correlation coefficient for the overdamped bistable os
lator.

Theoretical curves are shown in Fig. 5 as solid lines, a
demonstrate nearly perfect agreement with the numerica
sults, although intrawell dynamics has been neglected.
underline that in contrast to the previous studies of aperio
stochastic resonance, our theory is able to cover the str
nonlinear regime, where the signal magnitude is compara
with the potential barrier. For large-magnitude dichotom
noise, the dependencer(D) flattens, and the correlation co
efficient remains nearly constant in a finite region of no
intensity. For small signal amplitudes (Q,0.01), LRT can
be used. In this case, intrawell dynamics can be taken
account through the calculation of the susceptibility@21,28#,
which gives nearly the same results for the correlation co
ficient as Eq.~13! ~differences appear only for very sma
values of noise intensity!.

FIG. 5. Correlation coefficient obtained from numerical simu
tion of Eq. ~21! ~symbols! and theoretical prediction~13! ~solid
lines! vs noise intensity for different values of signal magnitud
Q50.05 ~circles!, Q50.1 ~squares!, and Q50.2 ~triangles!. The
flipping rate of the signalpg50.002.
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B. Phase synchronization

Let us now consider the phenomenon of synchroniza
from the classical viewpoint of phase locking. In this co
text, we take synchronization to mean that the timestk at
which the dynamical variablex(t) of system~21! switches
from one potential well to another are in agreement with
switching timestm of the external signal. Thus informatio
about the phase is carried by the switching timestk , and
therefore, the intrawell dynamics of the bistable system
not important for our analysis. We introduce instantane
phasesF(t) andC(t) of the system and signal, respective
using the ansatz@11#

x~ t !5xm sgn@cosF~ t !#, d~ t !5Q sgn@cosC~ t !#,
~25!

whereF(t) andC(t) are defined from the switching time
of the system and dichotomic noise, respectively@35#:

F~ t !5p
t2tk

tk112tk
1pk, tk,t,tk11 ,

~26!

C~ t !5p
t2tm

tm112tm
1pm, tm,t,tm11 ,

and xm stands for the half-distance between the bistable
tractors. From Eqs.~26!, it follows that the phaseF(t) is a
piecewise linear function that increases by 2p after every
round trip from one potential well to another and back aga
The mean frequencŷv&5^] tF(t)& for such a definition of
the phase is

^v&5 lim
M→`

1

M (
k51

M
p

tk112tk
. ~27!

The quantity of interest for our study is the phase diff
encef(t)5F(t)2C(t). The condition for the phase syn
chronization of the noise-free system is@36#

uf~ t !u,const. ~28!

This condition also implies frequency locking between t
system and the driving signal. However, for noisy system
the definition of phase synchronization is not as straight
ward because of noise-induced phase diffusion@2#. For in-
stance, for the case of a noisy oscillator synchronized b
harmonic force, the phase difference performs Brownian-
motion in a tilted periodic potential@2#. That is, the phase
difference stays for a considerable time in a potential w
which corresponds to the phase-locking segments, and ra
makes jumps between potential wells, demonstrating ph
slips. Given these effects, there are several ways to define
notion of synchronization for stochastic systems, impos
restrictions on the different functionals of the syste
@11,20#. In particular, here we impose the following restri
tion on the fluctuations of the phase difference: the m
duration of the phase-locking segments must be large
comparison with the characteristic time scale of the driv
signal.

Synchronization of stochastic systems can also be
denced by the mean frequency-locking effect. We calcula
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the MSF equation~27! of system~21! as a function of the
internal noise intensity for different values of the drivin
signal amplitude—see Fig. 6. This figure shows the effec
MSF locking. We also note good agreement between
theory @Eq. ~19!# and numerical simulations.

Figure 7 shows the time series for the phase differe
f(t) for different levels of internal noise. The evolution o
f(t) is similar to that of classically synchronized oscillato
with noise: there are patterns of nearly constant phase di
ence~referring to the phase-locked regimes!, interrupted by
phase slips~the phase difference makes jumps of 2p). In
Fig. 7, the duration of the phase-locked segments is m
mized at a particular noise intensity. For weak noise,
MSF is smaller than the flipping rate of the dichotomic no
and the phase of the dichotomic noise surpasses the pha
the system. In contrast, for large noise intensities, the ph
of the driving signal lags the system phase and the M
becomes larger than the flipping rate.

FIG. 6. Mean frequencŷv& of the overdamped bistable osci
lator vs internal noise intensityD for different values of the mag-
nitude Q of the external dichotomic noise:Q50.05 ~circles!, Q
50.1 ~squares!, and Q50.2 ~triangles!. The flipping rate of the
signal pg50.002. The theoretical curves for the MSF^v&s from
Eq. ~19!, with ratesa1 anda2 calculated from Eq.~24!, are shown
as solid lines.

FIG. 7. Instantaneous phase differencef(t) for the overdamped
bistable oscillator for indicated values of the internal noise inten
D, with Q50.3, pg50.002. The time axis is given in the units o
the mean switching frequency of dichotomic noise:t5tpg.
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This noise-enhanced phase coherence becomes more
dent if we calculate the probability density of the phase d
ference c wrapped up in the @2p,p# region: c
5f(t) mod 2p. We show the probability densitiesP(c) of
the wrapped phase difference for different noise intensitie
Fig. 8. At an optimal noise intensity,P(c) possesses a well
expressed narrow peak: the width of the distribution is m
mal, while its height is maximal. For very weak or very lar
noise, the probability density of the phase difference
comes nearly uniform.

To quantify this behavior, we can use the ratio of t
distribution height,Pmax, to the variance of the phase diffe
ence as a measure of the phase coherence:

R5PmaxH E
2p

p

c2P~c!dc2F E
2p

p

cP~c!dcG2J 21/2

.

~29!

In our situation, the quantityR can be considered as a
equivalent of the signal-to-noise ratio. Both the variance
the wrapped phase and the height of the probability distri
tion pass through extrema when plotted againstD: the vari-
ance possesses a minimum, while thePmax has a maximum.
As the result, the ratioR passes through a single maximum
indicating noise-enhanced growth of the phase cohere
The phase coherence measureR is shown in Fig. 9 as a
function of noise intensity for different values of the sign
magnitudeQ.

Finally, we calculate the effective diffusion constant d
fined as

Deff5
1

2

d

dt
@^f2~ t !&2^f~ t !&2#, ~30!

which describes the spreading of an initial distribution of t
phase difference. The noise-enhanced phase coherence@11#
is manifested through the existence of a minimum in
dependence ofDeff on D ~see Fig. 10!: for a large enough
magnitude of dichotomic noise, the effective diffusion co
stant can be minimized, which corresponds to longer pha
locking epochs@2# ~see Fig. 7!.

FIG. 8. Probability density of the wrapped phase difference
different values of noise intensity:D50.01 ~1!, D50.044~2!, and
D50.2 ~3!. Other parameters areQ50.2 andpg50.002.
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V. SYNCHRONIZATION OF A STOCHASTIC NEURON
MODEL BY A STOCHASTIC SPIKE TRAIN

Similar effects can be observed in stochastic neuron m
els. In such cases, it is more interesting and appropriat
consider a stochastic spike train rather than dichotomic n
as the external stochastic driving signal. We can think ab
a single neuron embedded in a neuronal network with
stochastic spike train representing the summed output o
the neurons in the network that are directly coupled to
neuron of interest. We use stochastic sequences of impu
as the model for the stochastic spike train.

We study an integrate-and-fire~IF! model neuron with
inhibitory synaptic feedback that is driven by internal wh
noise and an external stochastic impulse train@37#. The
model is governed by the following stochastic different
equations

v̇52
v
a

1I 01Qn~ t !2kw1A2Dj~ t !,

~31!

ẇ52Gw1(
i 50

`

d~ t2t i !,

r
FIG. 9. Ratio ~29! vs noise intensity for indicated values o

signal magnitude. Other parameters are the same as in Fig. 8.

FIG. 10. The effective diffusion constant~30! vs noise intensity
for indicated values of signal magnitude. Other parameters are
same as in Fig. 9.
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wherea is the membrane time,I 0 is a constant current term
G is the inverse synaptic time,t i are the moments in time
when the neuron fires,j(t) is the internal white noise, an
n(t) is the external stochastic pulse train. The variablev is
reset to v50 every time it reaches the thresholdv51.
Pulses appear at random timestn with exponentially distrib-
uted intervals between pulsesDt, P(Dt)5ge2gDt, and the
time duration of each pulse is equal tots!1/g. We consider
only the subthreshold regime, so that there are no spike
the variablev(t) in the absence of the internal noise (D
50). Numerical results for the mean firing rate for the
model neuron are shown in Fig. 11. It can be seen that th
is a region of noise intensity where the mean firing rate
the model neuron is locked by the external stochastic sig
for large enoughQ. The differences between the frequenc
locking curves of Fig. 11 and those for the overdamp
bistable oscillator appear to be due to the asymmetry of
IF model and the imposed stochastic spike train.

The instantaneous phase of system~31! can be reasonably
defined using the firing timestk . The phasesF(t) andC(t)
of the system and stochastic spike train, respectively,
given by

F~ t !52p
t2tk

tk112tk
12pk, tk,t,tk11 ,

~32!

C~ t !52p
t2tm

tm112tm
12pm, tm,t,tm11 ,

FIG. 11. Mean firing rate for the integrate-and-fire model ne
ron ~31! ^ f & vs internal noise intensityD for the indicated values o
the magnitudeQ of the external stochastic pulse train. Paramete
a50.1, I 055, k5103, G50.8, g50.05, andts5g21/10.
e

in

re
f
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-
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so that the phases are changed by 2p with each firing event.
The mean frequencies of the system and stochastic s
train, respectively, are simply their mean firing rates. O
numerical results for the IF model neuron~Fig. 12! again
display the effect of phase synchronization.

VI. SUMMARY

This work shows that the synchronization of noisy sy
tems by stochastic signals manifests itself through insta
neous phase-locking and mean frequency locking, as we
through the growth of coherence measures. In real-world
plications, it is common for both the system and drivin
signal to be noisy. In this study, we considered stocha
systems that ‘‘oscillate’’ because of internal noise. We fou
that the temporal behavior of such systems can be sync
nized by external stochastic signals. This result may be
evant to problems in neurobiology, such as precision tim
of neurons@16#, given that neurons and their inputs are typ
cally noisy.
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FIG. 12. Instantaneous phase differencef(t) for the integrate-
and-fire model neuron~31! for different values of the internal nois
intensityD andQ54. Other parameters are the same as in Fig.
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